منابع مشابه
Traversing Directed Eulerian Mazes
The paper describes two algorithms for threading unknown, finite directed Eulerian mazes. Each of these algorithms is performed by a traveling robot whose control is a finite-state automaton. It is assumed that each vertex has a circular list of its outgoing edges. The items of this list are called exits. Each of the algorithms puts in one of the exits of each vertex a scan pebble. These pebble...
متن کاملOn Making Directed Graphs Eulerian
A directed graph is called Eulerian, if it contains a tour that traverses every arc in the graph exactly once. We study the problem of Eulerian Extension (EE) where a directed multigraph G and a weight function is given and it is asked whether G can be made Eulerian by adding arcs whose total weight does not exceed a given threshold. This problem is motivated through applications in vehicle rou...
متن کاملEulerian and Hamiltonian Directed Hypergraphs
Let H = (V ,E) be a directed hypergraph, also called a dihypergraph. Each vertex v ∈ V is incident to some hyperarcs in E . Conversely, each hyperarc E ∈ E is incident to some vertices in V . H is Eulerian if there is a dicycle C such that each hyperarc E ∈ E appears exactly once in C. Similarly, H is Hamiltonian if there is a dicycle C ′ such that every vertex v ∈ V appears exactly once in C ....
متن کاملEulerian and Hamiltonian dicycles in Directed hypergraphs
In this article, we generalize the concepts of Eulerian and Hamiltonian digraphs to directed hypergraphs. A dihypergraph H is a pair (V(H), E(H)), where V(H) is a non-empty set of elements, called vertices, and E(H) is a collection of ordered pairs of subsets of V(H), called hyperarcs. It is Eulerian (resp. Hamiltonian) if there is a dicycle containing each hyperarc (resp. each vertex) exactly ...
متن کاملMulti-Eulerian Tours of Directed Graphs
Not every graph has an Eulerian tour. But every finite, strongly connected graph has a multi-Eulerian tour, which we define as a closed path that uses each directed edge at least once, and uses edges e and f the same number of times whenever tail(e) = tail(f). This definition leads to a simple generalization of the BEST Theorem. We then show that the minimal length of a multi-Eulerian tour is b...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Graph Algorithms and Applications
سال: 2002
ISSN: 1526-1719
DOI: 10.7155/jgaa.00049